Generalized Fitch Graphs: Edge-labeled Graphs that are explained by Edge-labeled Trees
نویسنده
چکیده
Fitch graphs G = (X,E) are di-graphs that are explained by {⊗, 1}-edge-labeled rooted trees with leaf set X: there is an arc xy ∈ E if and only if the unique path in T that connects the least common ancestor lca(x, y) of x and y with y contains at least one edge with label 1. In practice, Fitch graphs represent xenology relations, i.e., pairs of genes x and y for which a horizontal gene transfer happened along the path from lca(x, y) to y. In this contribution, we generalize the concept of xenology and Fitch graphs and consider complete di-graphs K|X| with vertex set X and a map ε that assigns to each arc xy a unique label ε(x, y) ∈ M ∪ {⊗}, where M denotes an arbitrary set of symbols. A di-graph (K|X|, ε) is a generalized Fitch graph if there is an M ∪ {⊗}-edge-labeled tree (T, λ) that can explain (K|X|, ε). We provide a simple characterization of generalized Fitch graphs (K|X|, ε) and give an O(|X|2)-time algorithm for their recognition as well as for the reconstruction of a least resolved phylogenetic tree that explains (K|X|, ε).
منابع مشابه
On the Isomorphism Problem for Generalized Baumslag-solitar Groups
Generalized Baumslag–Solitar groups (GBS groups) are groups that act on trees with infinite cyclic edge and vertex stabilizers. Such an action is described by a labeled graph (essentially, the quotient graph of groups). This paper addresses the problem of determining whether two given labeled graphs define isomorphic groups; this is the isomorphism problem for GBS groups. There are two main res...
متن کاملConstructing Graceful Graphs with Caterpillars
A graceful labeling of a graph G of size n is an injective assignment of integers from {0, 1,..., n} to the vertices of G, such that when each edge of G has assigned a weight, given by the absolute dierence of the labels of its end vertices, the set of weights is {1, 2,..., n}. If a graceful labeling f of a bipartite graph G assigns the smaller labels to one of the two stable sets of G, then f ...
متن کاملA note on 3-Prime cordial graphs
Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....
متن کامل4-Prime cordiality of some classes of graphs
Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....
متن کاملGraceful labelings of the generalized Petersen graphs
A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.03657 شماره
صفحات -
تاریخ انتشار 2018