Generalized Fitch Graphs: Edge-labeled Graphs that are explained by Edge-labeled Trees

نویسنده

  • Marc Hellmuth
چکیده

Fitch graphs G = (X,E) are di-graphs that are explained by {⊗, 1}-edge-labeled rooted trees with leaf set X: there is an arc xy ∈ E if and only if the unique path in T that connects the least common ancestor lca(x, y) of x and y with y contains at least one edge with label 1. In practice, Fitch graphs represent xenology relations, i.e., pairs of genes x and y for which a horizontal gene transfer happened along the path from lca(x, y) to y. In this contribution, we generalize the concept of xenology and Fitch graphs and consider complete di-graphs K|X| with vertex set X and a map ε that assigns to each arc xy a unique label ε(x, y) ∈ M ∪ {⊗}, where M denotes an arbitrary set of symbols. A di-graph (K|X|, ε) is a generalized Fitch graph if there is an M ∪ {⊗}-edge-labeled tree (T, λ) that can explain (K|X|, ε). We provide a simple characterization of generalized Fitch graphs (K|X|, ε) and give an O(|X|2)-time algorithm for their recognition as well as for the reconstruction of a least resolved phylogenetic tree that explains (K|X|, ε).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Isomorphism Problem for Generalized Baumslag-solitar Groups

Generalized Baumslag–Solitar groups (GBS groups) are groups that act on trees with infinite cyclic edge and vertex stabilizers. Such an action is described by a labeled graph (essentially, the quotient graph of groups). This paper addresses the problem of determining whether two given labeled graphs define isomorphic groups; this is the isomorphism problem for GBS groups. There are two main res...

متن کامل

Constructing Graceful Graphs with Caterpillars

A graceful labeling of a graph G of size n is an injective assignment of integers from {0, 1,..., n} to the vertices of G, such that when each edge of G has assigned a weight, given by the absolute dierence of the labels of its end vertices, the set of weights is {1, 2,..., n}. If a graceful labeling f of a bipartite graph G assigns the smaller labels to one of the two stable sets of G, then f ...

متن کامل

A note on 3-Prime cordial graphs

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....

متن کامل

4-Prime cordiality of some classes of graphs

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....

متن کامل

Graceful labelings of the generalized Petersen graphs

A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.03657  شماره 

صفحات  -

تاریخ انتشار 2018